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Abstract. The one- and two-electron ground-state energies of singly and doubly charged silicon
(Si) dots modelled by a sphere covered with a silicon dioxide(SiO2) layer embedded in various
dielectric media can be calculated as functions of the sphere size and the thickness of the oxide
by extending the work of Allanet al and Babíc et al. The electron-self-polarization, electron–
electron and electron-polarization energies are treated by first-order perturbation theory, taking
the confined free-electron state as the unperturbed state. By changing the thickness of the
oxides or the surrounding dielectric medium, the applied voltage required for the tunnelling of
one electron when one electron already exists inside the dot is greatly reduced. We discuss the
possible consequence of electron tunnelling in a Si dot and the electroluminescence of porous Si.

1. Introduction

Since the discovery of the visible-light emission from porous silicon (Si) [1], there has been
growing interest [2, 3] in the electronic and optical properties of various types of nanoscale
Si. There is also a steady interest in electron transport by resonance tunnelling [4] in a double
barrier composed of nanoscale Si clusters in an amorphous silicon dioxide (SiO2) matrix [5].
Experimental evidence of strong single-charge effects in the operation of Si nano-crystal
memory due to Coulomb blockades and three-dimensional confinement has also appeared
in the literature recently [6]. Electroluminescence from various Si nanostructures has also
been investigated [2, 7–9].

In the Si nanostructure, it appears that the quantum confinement and charging effect
of the Si dot covered with an SiO2 layer embedded in various media plays a dominant
role in optical as well as transport properties. In this short report, we will consider the
one- and two-electron ground-state energies of a spherical Si dot covered with an SiO2

layer embedded in an infinite medium, similar to that considered in the work of Babić et al
[10] and Allan et al [7], as a guide to fabricating efficient electroluminescent devices and
single-electron devices from the silicon nanostructure.

2. Model

The model system that we consider (see figure 1) consists of a dielectric sphere of radius
a with a dielectric constantε1 (region I), a surrounding layer with outer radiusb and inner
radiusa with a dielectric constantε2 (region II), and an outermost region with a dielectric
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Figure 1. A schematic diagram of a silicon dot covered with silicon dioxide embedded in a
dielectric medium. Region I is a silicon dot modelled by a sphere with radiusa. Region II is
an amorphous silicon dioxide layer, and region III is a surrounding third medium.

constantε3 (region III). More specifically, we will regard region I as the nanoscale Si
cluster (dot), and region II as the oxidized layer, whose existence can be directly [11]
and indirectly [12] verified in the light-emitting Si nanostructure, and region III as the
surrounding medium. A similar dielectric problem of a spherical semiconductor quantum
was considered by Allanet al [7] and others [10, 13]. However, they considered a dot
directly embedded in an infinite surrounding medium without a finite oxide layer [7, 13] or
directly embedded in infinite silicon dioxide (SiO2) [10].

The electrostatic problem of this system can be studied by the standard textbook method
[13, 14]. The electrostatic potentialφ(r) at point r, created by a point charge havingq
at s within spherical region I, consists of a direct Coulomb potential as well as an indirect
polarization potentialφpl created by the image charge

φ(r) = q

4πε0ε1|r − s| + φpl(r) (1)

where

φpl(r) = q

4πε0ε1

∞∑
l=0

Alr
lslPl(cosθ). (2)

Pl is the Legendre polynomial andθ is the angle betweenr ands. The first term is the
direct Coulomb and the last term is the indirect polarization potential whose coefficientAl
is given by

Al = (l + 1)

a2l+1

a2l+1(ε2− ε3)(ε1+ l(ε1+ ε2))+ b2l+1(ε1− ε2)(ε3+ l(ε2+ ε3))

Ml

(3)

with the denominatorMl given by

Ml = a2l+1(ε1− ε2)(ε2− ε3)l(l + 1)+ b2l+1(ε2+ l(ε1+ ε2))(ε3+ l(ε2+ ε3)). (4)

We note thatb→ a or ε2 = ε3 gives the well documented result [10, 13]

Al → (l + 1)

a2l+1

ε1− ε3

ε3+ l(ε1+ ε3)
(5)
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for the dot covered by an infinite medium with the dielectric constantε3.
Although they are irrelevant to the present discussion, we will present the expressions

for the electrostatic potential for regions II and III outside this sphere for the sake of
completeness. The potentialφ2 in the layer region II is given by

φ2(r) = q

4πε0

∞∑
l=0

(
Clr

l + Dl

rl+1

)
slPl(cosθ) (6)

where

Cl = (ε2− ε3)(l + 1)(2l + 1)/Ml (7)

and

Dl = (2l + 1)(ε3+ l(ε2+ ε3))b
2l+1/Ml. (8)

Similarly, the potentialφ3 of the outermost region III is given by

φ3(r) = q

4πε0

∞∑
l=0

Fl

rl+1
slPl(cosθ) (9)

where

Fl = (2l + 1)2ε2b
2l+1/Ml (10)

and the denominatorMl is given by equation (4).
When we put one electron having the chargeq into this Si dot, the electron creates a

polarization potentialφp given by the second term of (1). This electron then interacts with
the polarization potential it has created itself, known as the self-polarization energy. This
energy becomes

Vs(r) = q2

8πε0ε1

∞∑
l=0

Alr
2l . (11)

The factor 1/8πε0ε1 comes from the self-energy correction 1/2 and the factor 1/4πε0ε1 of
equation (2).

When there are two electrons atr1 andr2 in the dot, there are altogether four electrostatic
energies, listed below.

(i) The two self-polarization energiesVs(r1) andVs(r2) for each electron.
(ii) The direct Coulomb energy between the two electrons

Vc(r1, r2) = q2

4πε0ε1|r1− r2| . (12)

(iii) The polarization energy, which is the energy of interaction between the electron
and the image charge created by another electron, given by

Vp(r1, r2) = q2

4πε0ε1

∞∑
l=0

Alr
l
1r
l
2 (13)

where the coefficientAl is given by (3).
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3. Ground-state energy

Next the ground-state energies are calculated using the perturbation theory by regarding the
above electrostatic energies as perturbations. It is implicitly assumed that the size of the
dot is of the order of a nanometre, and that the kinetic energy is dominant in relation to the
total energy [10]. Therefore we are going to look at thestrong-confinement regime[15].

The Hamiltonian for the one-electron case is given by

H = − h̄2

2m∗e
∇2+ V (r)+ Vs(r) (14)

wherem∗e is the effective mass of the conduction electron in the Si dot,V (r) is the infinite
barrier potential for the electron, which confines the electron within this Si sphere with
radiusa. Vs(r) is the self-polarization energy (11).

It is well recognized that the effective-mass equation and the infinite barrier potential
cannot give a quantitative account of the energy levels in a dot [16]. However, since our
main purpose in this report is to find the qualitative effect of the finite oxide layer on the
ground-state energy level, we will use this effective-mass model to make the formulation
as simple as possible. A simple inclusion of the finite barrier potential [13, 16, 17], for
example, will improve our results quantitatively.

If we regard the self-polarization energy as a perturbation, then the wavefunctionψ0(r)
for the ground state is given by [15]

ψ0(r) =
√
π

2a3
j0(πr/a) (15)

wherej0 is the spherical Bessel function, and the unperturbed ground-state energyE0 is
given by

E0 = h̄2

2m∗e

(
π

a

)2

. (16)

We use the effective mass of Si,m∗e = 0.26me, whereme is the electron mass, derived from
1/m∗e = (1/3)(1/m∗l + 2/m∗t ) with m∗l = 0.916me andm∗t = 0.19me are the longitudinal
and the transverse effective masses of the conduction electron. Then we find

E0 = 1.446

(a (nm))2
eV (17)

where the energy is given in eV and the radiusa in nanometres.
The first-order perturbation energyEs = 〈φ0(r)|Vs(r)|ψ0(r)〉 of the self-polarization

energyVs is given by

Es = q2

8πε0ε1a
Ss (18)

whereSs is a function of the ratiob/a as well as of the three dielectric constantsε1, ε2 and
ε3, and is given by the series

Ss = 2π2
∞∑
l=0

a2l+1Al

∫ 1

0
j2

0 (πx)x
2l+2 dx

= 2π2
∞∑
l=0

(l + 1)[(ε2− ε3)(ε1+ l(ε1,2))+ (b/a)2l+1(ε1− ε2)(ε3+ l(ε2,3))]

(ε1− ε2)(ε2− ε3)l(l + 1)+ (b/a)2l+1(ε2+ l(ε1,2))(ε3+ l(ε2,3))

×
∫ 1

0
j2

0 (πx)x
2l+2 dx (19)
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where, in this expressiononly, we have replacedε1 + ε2 by ε1,2, and ε2 + ε3 by ε2,3, to
assist with the layout.

This series should be numerically evaluated [10], and the final result has the form

Es = ηs

(a (nm))
eV. (20)

So far we have not considered the size dependence of the Si sphere’s dielectric constant.
Several recent theoretical works [18–20], have shown that the size dependence of the
dielectric constant is significant. In this work, we will include the radius dependence of the
Si sphere’s dielectric constant, for which we employ the interpolation formula proposed by
Lannooet al [20, 7]:

ε1− 1= 11.4− 1

1+ (0.92/a)1.18
(21)

where the sphere radiusa is given in nm. The dielectric constant becomes a function of the
dot radius and is reduced from the value 11.4 of the bulk Si as the dot grows smaller, as
the energy gap opens up due to the quantum confinement of the free carrier [18–20]. For
example, the dielectric constant of a Si dot with radiusa = 1 (nm) becomesε1 = 6.456,
which is about 50% of the bulk dielectric constant. The parameterηs in (20) is not a
constant but a function of the radiusa.

Figure 2. The coefficientηs of the self-polarization energy as a function of the ratiob/a of the
oxide thicknessb− a to the dot radiusa. The dot radius isa = 1 (nm). Note that it is negative
whenε3 > ε1 andb/a is less than∼2.

We showed theηs as functions of the thickness of the oxides represented by the ratio
b/a in figure 2, when the dielectric constants of the surrounding medium areε3 = 1 (air),
ε3 = 1.77 (porous silicon with a porosity of 74% [7, 21]),ε3 = 4 (silicon dioxide), and
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ε3 = 80 (water). We considered a Si dot with the dot radiusa = 1 (nm) and the dielectric
constantε1 = 6.456 calculated from (21).

We note that the sign ofηs depends on that of the effective image charge, which
becomes positive for an electron when the dielectric constantε3 of the surrounding medium
is higher than that of the Si sphereε1, and the thickness of the oxide is thin. In such
a case, the increase in the electronic energy level due to quantum confinement weakens,
and the injection of the electron should occur at a lower threshold voltage. The change
in sign of ηs occurs whenb/a ∼ 2; therefore this image-charge effect which weakens the
strong-confinement effect on the kinetic energy is effective when the thickness of the oxide
is less than about 50% of the radius of the dots. In table 1, we show the numerical value
of ηs for b/a = 1.0 (without oxide),b/a = 1.1 (thin oxide),b/a = 2.0 (thick oxide) and
b/a = 5 (very thick oxide) when the dot radiusa = 1 (nm) and the dielectric constant
ε1 = 6.456, and the dot is embedded in various media.

Table 1. Numerical values ofηs for a Si dot covered with SiO2 embedded in various media with
different levels of oxidizationb/a when the dot radiusa = 1 (nm) andε1 = 6.456. Note that
whenb/a→∞, the dot is embedded in bulk SiO2 andηs→ 0.047 [5], while whenb/a = 1.0,
the dot is embedded in the third medium with the dielectric constantε3 and, in particular,ηs

becomes negative whenε3 > ε1.

b/a = 1.0 b/a = 1.1 b/a = 2.0 b/a = 5.0

Air (ε3 = 1) 0.364 0.329 0.195 0.105
Porous silicon (ε3 = 1.77) 0.186 0.169 0.110 0.072
Silicon dioxide (ε3 = 4) 0.047 0.047 0.047 0.047
Silicon (ε3 = 11.4) −0.037 −0.023 0.014 0.034
Water (ε3 = 80) −0.084 −0.059 −0.001 0.029
Metals (ε3 = ∞) −0.093 −0.066 −0.004 0.028

The dependence on the sizea (in nm) of the one-electron ground-state energy is given
by

E
(1)
tot = E0+ Es = 1.446

a2
+ ηs

a
(22)

in eV. We have to recall thatηs is also a function ofa. Naturally, when the oxide is thin,
the effect of this oxide is small, and the behaviour of the energy level is close to that of the
Si dots directly embedded in the medium with the dielectric constantε3.

The two-electron Hamiltonian is given by

H = − h̄2

2m∗e
(∇2

1 +∇2
2)+ V (r1)+ V (r2)+ Vs(r1)+ Vs(r2)+ Vc(r1, r2)+ Vp(r1, r2).

(23)

Now the four electrostatic energiesVs (two cases),Vc andVp are the perturbations.
The self-polarization energy is given by (20), and the first-order perturbation energy

Ec = 〈ψ0(r1)ψ0(r2)|Vc(r1, r2)|ψ0(r1)ψ0(r1)〉 of the direct Coulomb energy (12) was
calculated in [10], and is given by

Ec = 2.57

ε1a (nm)
eV. (24)

Only the l = 0 component survives [10, 22] in the first-order perturbation energy
Ep = 〈ψ0(r1)ψ0(r2)|Vp(r1, r2)|ψ0(r1)ψ0(r1)〉 of the polarization potential (13), and the
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Figure 3. The coefficientηp of the polarization energy as a function of the ratiob/a of the
oxide thickness to the dot radius. The dot radius isa = 1 (nm). Note that it is negative when
ε3 > ε1 andb/a is less than∼2.

result is written as

Ep = ηp

a
(25)

where the coefficientηp is given by an analytic formula:

ηp = q2

4πε0ε1

a(ε2− ε3)ε1+ b(ε1− ε2)ε3

bε2ε3
. (26)

We showed theηp as functions of the thickness of the oxides represented by the ratiob/a

in figure 3, where the energyEp is given in eV, and the radiusa is in nm. Again, we
considered a Si dot with the dot radiusa = 1 (nm) as in table 1. As in the case ofηs,
because of the reversal of the sign of the image charge, the sign ofηp, and hence the sign
of the potentialVp, becomes negative whenε3 > ε1 and the thickness of the oxide layer is
low. In table 2, we showed the numerical values ofηp for various oxide thickness for a Si
dot with a = 1 (nm).

Then, the total energy of the two-electron system is given by

E
(2)
tot = 2E(1)tot + Ec+ Ep = 2.892

a2
+ 2.57/ε1+ 2ηs+ ηp

a
(27)

where the energy is given in eV and the radiusa in nm, and the difference1Etot between
the two-electron and one-electron ground-state energies is given by

1Etot = E(2)tot − E(1)tot =
1.446

a2
+ 2.57/ε1+ ηs+ ηp

a
. (28)
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Figure 4. The one-electron ground-state energyE(1)tot and two-electron ground-state energyE(2)tot
as functions of the dot radiusa for various oxide thicknessesb− a: (a) thin oxide,b− a = 0.2
(nm); (b) thick oxide,b − a = 1.0 (nm); and (c) very thick oxide,b − a = 5.0 (nm).
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Figure 5. The effective electron–electron interaction energyUeff as a function of the dot radius
a for various oxide thicknesses: (a) thin oxide,b − a = 0.2 (nm); (b) thick oxide,b − a = 1.0
(nm); and (c) very thick oxide,b − a = 5.0 (nm).
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Table 2. Numerical values ofηp for a Si dot covered with SiO2 embedded in various media with
different levels of oxidizationb/a when the dot radiusa = 1 (nm) andε1 = 6.456. Note that
whenb/a →∞, the dot is embedded in bulk SiO2 andηp = 0.074 [8], while whenb/a = 1,
the dot is embedded in the third medium with the dielectric constantε3.

b/a = 1.0 b/a = 1.1 b/a = 2.0 b/a = 5.0

Air (ε3 = 1) 0.655 0.602 0.364 0.190
Porous silicon (ε3 = 1.77) 0.318 0.295 0.196 0.122
Silicon dioxide (ε3 = 4) 0.074 0.074 0.074 0.074
Silicon (ε3 = 11.4) −0.052 −0.041 0.011 0.049
Water (ε3 = 80) −0.110 −0.094 −0.018 0.037
Metals (ε3 = ∞) −0.120 −0.102 −0.023 0.035

The effective electron–electron interaction energyUeff [7] is given by

Ueff = E(2)tot − 2E(1)tot =
2.57/ε1+ ηp

a
(29)

which corresponds to the difference between the ionization energy and the electron affinity
of the atoms [4]. Note that, in the above formulae,ηs andηp both depend on the dot radius.
We show the size dependence of the one- and the two-electron ground-state energies in
figure 4 and that of the effective electron–electron interaction energyUeff in figure 5 for
a thin oxide layer (a), for a thick oxide layer (b) and for a very thick oxide layer (c) as
functions of the sphere radiusa. As would be expected, when the oxide is thin and the
dielectric constant of the surrounding mediumε3 is higher than that of the dotε1, the
induced image charge of the electron is positive, and theηp becomes negative. Therefore,
when ε3 > ε1, the charging effect or the Coulomb blockade represented by the effective
electron–electron interactionUeff is less pronounced.

4. Discussion

In this short note, we have calculated the one- and two-electron ground-state energies of a Si
dot covered with a SiO2 layer embedded in a dielectric medium. It is important to note that
all of the electrostatic terms have been included. Our results for the two-electron ground
state clearly indicate the importance of the self-polarization and polarization energies, which
are comparable in magnitude to the direct Coulomb interaction energy. A similar conclusion
had already been reached by Babić et al [10] for a Si dot covered with an infinite SiO2
layer and by Allanet al [7] for a Si dot covered with an infinite porous Si layer. Because
these polarization potentials are determined by the effective image charge, the sign of the
potential can be tuned by changing the sign of the effective image charge. This effective
charge can be made either positive or negative by changing the thickness of the oxide as
well as the surrounding medium in our three-component model.

A comparison of the one- and two-electron ground-state energies in figure 4 shows the
charging effect and the Coulomb blockade, demonstrating that the injection of more than one
electron needs extra energy of the order of a few tenths of an eV to a few eV. Therefore, the
theories regarding the transport properties of porous silicon and various silicon dots must
take into account this charging effect. In this case, however, the charging effect comes
not only from the classical electrostatic energies, but also from the quantum confinement
effect of the kinetic energies. Therefore, the effective capacitance of the Si dot should be
smaller than that of its classical counterpart [5]. This charging effect has been observed in
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the conductance peak of the Si nano-crystal double barrier [5] and in the discrete change
of the threshold voltage in the Si nano-crystal memory [6].

Interestingly, whenε3 → ∞, corresponding to an experimental situation where the Si
nano-crystal is in an aqueous electrolyte (ε3 ' 80) [7] or covered by a metallic electrode
(ε3 → ∞), as in the case of a porous silicon electroluminescence (EL) measurement, this
charging effect is reduced as long as the oxide is thin (b/a < 2). The voltage-tunable EL
observed for cathodically polarized n-type porous Si in an electrolyte by Bsiesyet al [9]
indicates that this tunability is related to the size and efficiency distribution of the Si dot
associated with an electrically induced resonant carrier injection. Therefore, the applied
voltage allows for a selective excitation of specific sizes of dot. The observed range∼1 eV
of the peak energy correlates to the observed energy range of the one-electron ground-state
energy of dots of a reasonable size [11], as shown in figure 4.

Delerueet al [23] has further argued that when there are two electrons in the Si dots,
both the photoluminescence (PL) and the EL are quenched by the fast Auger recombination
process. As the voltage is increased, the Fermi level scans the one-electron ground-state
energiesE(1)tot of dots of successively smaller size; then the first switching on of the EL
occurs as a result of the resonant injection of the first electron. As the voltage is further
increased and the Fermi level scans across the energiesE

(1)
tot +Ueff, the EL is switched off by

Auger quenching as a result of the injection of the second electron. Therefore, the effective
electron–electron interaction energyUeff (see figure 5) determines the observed voltage
window and the narrow linewidth [9] of the EL spectrum. Although this phenomenon had
been observed only for n-type porous Si, the same EL has recently been reported from
p-type porous Si [24], caused by illumination. In this case, the free carrier (electron) in the
p-type Si substrate is generated by photon absorption.

This charging effect in porous Si has also been noted in the air by Linnroset al [8].
They have found that the exhaustion and degradation occur in the porous Si EL diodes
operated in ambient air when the total charge injected into the porous layer is of the same
order as the number of dots available. They have suggested that the exhaustion is due to
the silicon dots being filled with either one electron or one hole. Therefore, the Coulomb
blockade inhibits further current transport through the porous layer.

In conclusion, from our simple model calculation, it appears that by changing the
thickness of the surface-oxidized layer and the dielectric constant of the surrounding
medium, it is possible to tune both the various voltage windows appearing during electron
transport in the Si nanostructure and the PL and EL seen from porous Si.
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